

Claudine Basset-Mens and Hayo van der Werf

6-8 Octobre 2003

: LCA in

Context

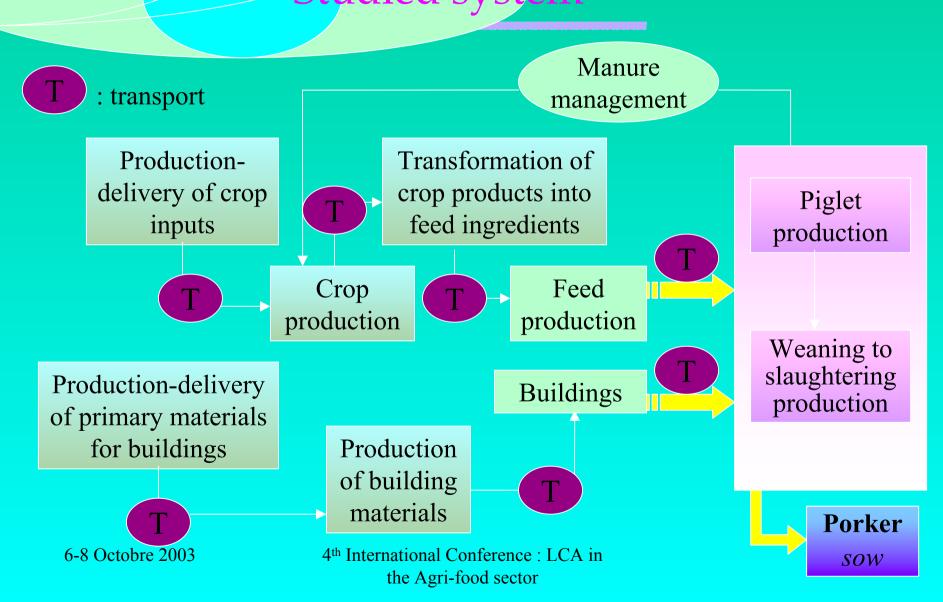
In Brittany, in forty years: change from a traditional to an intensive industrial production system
 Huge increase in production and animal densities
 Increased pollution of water, soil and air

The current pig production model is in crisis

- Pig producers:
 - are facing a social demand for a better respect of the environment
 - and have to cope with a very competitive pig world market

Objectives

 To produce an assessment of the environmental performance of contrasting pig farming systems


- To identify « hot-spots » for each system
- To propose an evaluation of the robustness of the main results

Evaluation methodology

- Life Cycle Assessment
- 7 impact categories : eutrophication, climate change, acidification, energy use, terrestrial toxicity, land use, pesticide use
- referenced to two functional units :
 - one kg of pig live weight at slaughter
 - one hectare of land used
- applied to three contrasting scenarios of pig production

Studied system

Farming system scenarios

• 1. Good Agricultural Practice (GAP) (conventional)

• 2. Agriculture Biologique (AB) (organic)

 3. Label Rouge (LR) (« Porc fermier Label Rouge » quality label)

Characteristics of GAP, LR and AB pig farming systems

	GAP	LR	AB
Piglet production			
Housing	Slatted floor	Outdoor	Outdoor
Weaned piglet/productive	25.5	22.6	20.3
sow/year			
Weaning age, days	25.7	28	42
Surface per sow, m ²	<4	1000	1000
Feed per sow (boar included),	1313	1490	1695
kg/year			
Weaning to slaughtering			
Housing	Slatted floor	Straw litter	Straw litter
Surface per pig, m ²	0.85	2.6	2.3
Feed: gain ratio	2.7	2.9	3.2
Slaughter age, days	174	190	195
Slaughter weight, kg	110	115	120

4th International Conference : LCA in the Agri-food sector

Inventory data

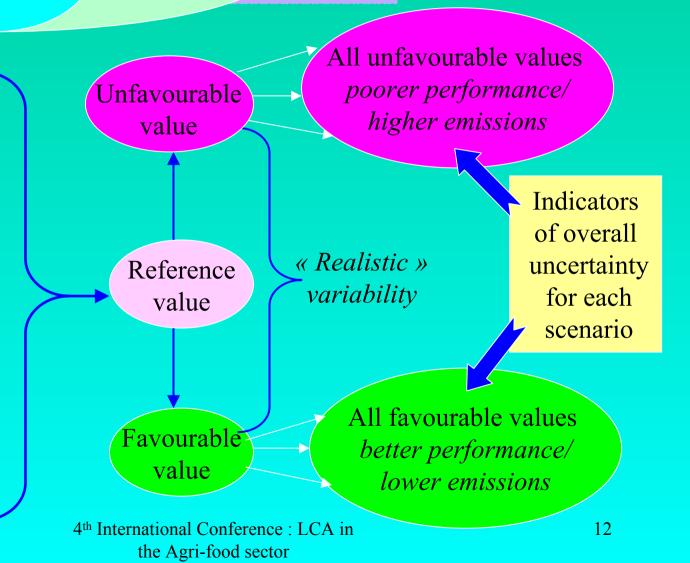
- <u>Objective</u>: to produce specific references for each system
- <u>Currently</u>: use of normative references which do not allow to distinguish different ways of producing the same product
- <u>In this study</u>: support of an expert panel from the INRA which based its expertise on:
 - simulation models
 - experiments
 - interpretation of the available literature.

Some emission calculations....

Emission	Method	Parameters involved
NH ₃ after slurry application on field	STAL simulation model (Morvan et Leterme, 2001).	 Slurry composition climate (application date) soil surface state burying degree
NO ₃ leaching on field	Experiment, simulation + expertise Morvan	 crop (species) fertilisation intercropping duration
NH ₃ and N ₂ O in straw litter housing buildings	Experiments in specialised farms (Robin, 2002)	type and quantity of substrateanimal densityventilation
NH ₃ and N ₂ O during compost production	Literature + experiments and modelisation Paillat et al. (2003)	C/N and pH of substratComposting duration

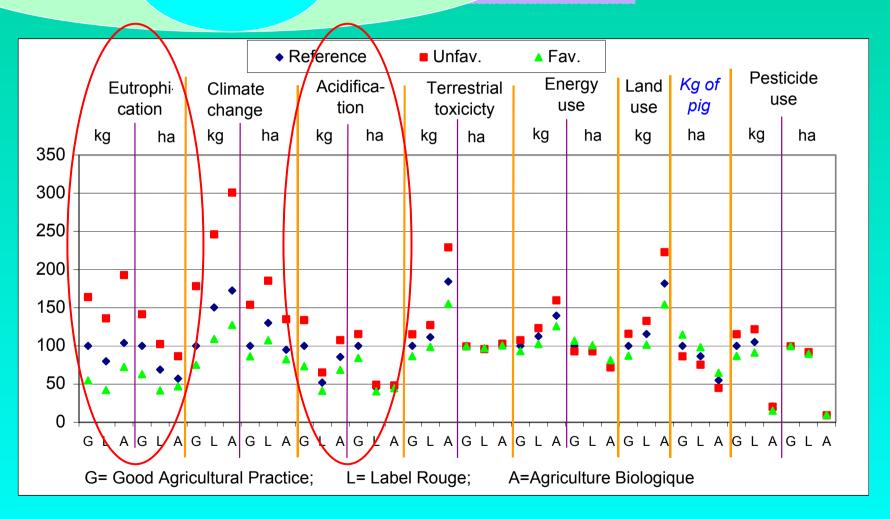
Estimation of the uncertainty of final results

Key parameters


Technical performance

- * crop yield
- * WS feed : gain ratio

Emissions


- ******Field* : *NH*₃, *N*₂*O*, *NO*₃
- *building/storage /composting:
 NH₃, N₂O

6-8 Octobre 2003

LCA results and estimated uncertainty for three contrasting pig farming systems

LR compared to GAP

Both per ha and per kg:

∜lower impacts for eutrophication and acidification

s a higher impact for climate change

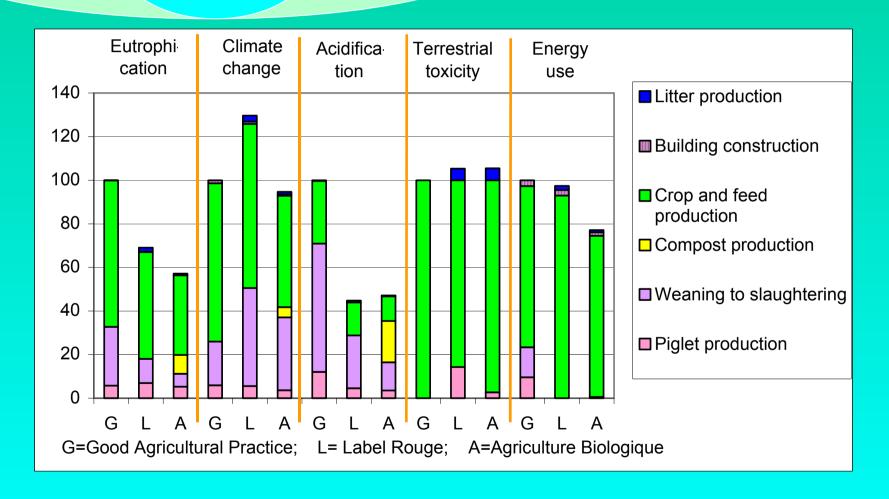
similar other impacts

• pig production per ha: 14% less

AB compared to GAP

Results are very dependent on the FU

- Per ha
- Lower impacts:


 eutrophication,

 acidification, energy use,

 pesticide use
- Similar : climate change, terrestrial toxicity
- ♦ Pig production : 45% less

- Per kg of pig
- ♦ Lower impact : pesticide use
- Similar: eutrophication, acidification
- Worse: climate change, terrestrial toxicity, energy use, land use

Contribution of life cycle stages to five impact categories, expressed per ha

the Agri-food sector

Hot spots and margins of improvement

- **GAP**: eutrophication and acidification: *crop* and feed production; pig production
- Catch-crops; diet; indoor climate; building design, covered slurry storage; slurry injection
- **LR** : climate change : *straw litter system*

Nature and quantity of litter;
 litter management; animal density; diet; indoor climate

• **AB**: acidification: compost production climate change: straw litter system

 low pH; high C/N; low aeration rate; reduced porosity

In conclusion

- Contribution to eutrophication and acidification:
 - LR: an interesting alternative to GAP provided that its emission of greenhouse gases can be reduced
 - AB: results very dependant on the FU
- Identification of hot spots and margins of improvement for each system
- The use of favourable and unfavourable scenarios allowed an estimation of the uncertainty of the results

Perspectives....

- For the impact category eutrophication: to produce different fate factors of nitrate in reaches relative to the type of reach
- To express the impacts per euro earned
- To produce the assessment of a « current practice » scenario

Origin of technical data

Type of data	GAP	LR	AB
Crop production and crop succession	Expertise (CETA 35 et CA 35, 56)	Expertise (CETA 35 et CA 35, 56) + farm survey	Expertise (CA 26, 56, 32; COOP 41) + farm survey
Crop yield	Statistics 1996 – 2000 (AGRESTE, 2001)	Statistics 1996 – 2000 (AGRESTE, 2001)	Expertise (CA 26, 56, 32; COOP 41) + farm survey
Feed composition	Feed industry	Feed industry	Feed industry
Pig produced per sow	Statistics 2001 (ITP, 2002)	Statistics 2001 (ITP, 2002)	Berger, 2000
Feed: gain ratio	Statistics 2001 (ITP, 2002)	Statistics 2001 (ITP, 2002) + growers' association	Expertise (INRA, COOP 44) + farm survey